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The problem of determining the particle-phase stress in potential flow has been 
examined recently using two different procedures by Sangani & Didwania (1993 a) and 
by Bulthuis (Appendix C of Zhang & Prosperetti 1994). The present study corrects 
errors in the expression given by Sangani & Didwania, recasts the expression given by 
Bulthuis in a form suitable for computation, and shows the equivalence of the results 
obtained by the two methods. 

1. Introduction 
Biesheuvel & Gorissen (1990) and Sangani & Didwania (1993a) (referred to as SD 

herein) derived average equations for a suspension of rigid massless spherical particles 
(‘bubbles’) in an incompressible potential flow. Their result for the disperse-phase 
average momentum equation may be written as 

n -+W-VI = -V . (n7)+n( f ,+ fg ) .  g j 
Here n is the particle number density, fand  w their average impulse and velocity,f, and 
fg the average viscous and body forces to which they are subject, and r is the ‘particle 
stress ’ consisting of a kinetic contribution rk and a potential contribution TP, 

The potential-interaction force on a representative bubble was decomposed in SD as 
a sum of pairwise interaction forces and its expression was derived using a procedure 
comonly used in statistical mechanics for determining the pressure or, equivalently, the 
equation of state of liquids (e.g. Irving & Kirkwood 1950; Rice & Gray 1965). In that 
context, one deals with a set of interacting particles (or molecules) in vacuum. For 
massless particles dispersed in a fluid, however, all the momentum is with the 
continuous phase and the analogy with molecules in vacuum is not obvious. For this 
reason, many investigators have followed a different approach in the study of two- 
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phase flows by taking systematic volume or ensemble averages of the two phases 
separately. This approach is commonly referred to as the two-fluid model, and has 
been described most recently by Zhang & Prosperetti (1994). In Appendix C of that 
study, Bulthuis also gave an expression for the particle stress. Both the approach and 
the resulting expressions for the particle stress appear quite different from those of SD, 
and it is the purpose of the present study to reconcile them. 

Since we do not have anything to add to the expressions forf, andf, given in SD, 
and since their analysis is independent of the potential flow interaction that is our focus 
here, we shall ignore viscosity and body forces at the outset. Also, as in SD, our goal 
will be to derive the average equations correct to first order in the spatial derivatives 
of the average fields. 

In $2, we present an approximate derivation of the particle stress using a method 
similar to that in SD. The potential interaction force between two particles separated 
by a distance r behaves as r-4 and, thus, the pair contribution to the stress behaves as 
r-3. Since the volume integral of this quantity over all pairs in an infinite suspension 
is not absolutely convergent, one would need to devise a suitable renormalization 
scheme. SD formulated the problem in terms of N interacting particles in a periodic cell 
and expressed the velocity potential in terms of the periodic Green's function for the 
Laplace equation to avoid the renormalization of the average stress. This resulted in 
a derivation that appears somewhat complicated and too specialized to periodic 
suspensions. The method presented in $2 provides a much simpler alternative and is 
also useful in identifying the source of an error in the derivation presented in SD which 
we discuss in $4. The method is quite general and can be applied in principle to other 
suspension problems with long-range interactions. 

In $ 3  we give an alternative derivation for the particle stress. This derivation is 
similar to that presented by Bulthuis in Appendix C of Zhang & Prosperetti (1994). 
According to this expression the stress is closely related to the fluid momentum flux 
Mi, = pu, u,, p being the density and u, the velocity of the fluid. Evaluation of the stress 
starting from this expression, however, is not a trivial matter since it requires a detailed 
knowledge of the velocity field around many particles and a volume integration of the 
momentum flux. In fact, since the velocity disturbance caused by a particle at a distance 
r from its centre only decays as r-', one must once again devise a suitable 
renormalization procedure for evaluating the particle stress starting from this 
expression - an issue that was not addressed in Zhang & Prosperetti (1994). Thus, 
further modifications are necessary before their result can be compared with the 
expression derived by the previous method and in SD. We carry out detailed 
calculations for a special case of periodic suspensions considered in SD to show that 
the results obtained by the two methods are equivalent. 

In $ 5  we summarize average equations for two-phase flows in which the potential 
interactions are of primary importance. Most studies on the subject suggest solving two 
sets of momentum equations, e.g. one for the disperse phase and the other for the 
mixture. An important point of this section is that in potential flow applications it is 
possible to replace the momentum equation for the mixture with a simpler kinematic 
description. 

2. Derivation of the particle stress by the first method 
Consider a suspension of N identical spherical particles in an inviscid incompressible 

fluid. Let '3" = (xl, 2,. . . , x", wl, w2,.  , . , w") denote the positions and velocities of the 
particles. Further, let g(UN, t )  be any dynamic variable (e.g. the centre-of-mass 
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velocity or the impulse) associated with a generic particle a. Then we define the 
ensemble average of g over all the particles by 

N 

n(x, t)g(x,  t )  = - d%"P(gN, t )  I: &(x-x")g"(%", t), 
N! ' 1  a-1 

(3) 

where P(%", t )  is the probability density distribution for finding the configuration of 
particles in a neighbourhood of @" at time t ,  and n(x, t )  the ensemble-averaged number 
density of particles, obtained by taking g" = 1 in the above expression. Here, the 
normalization condition for P ( W )  is taken to be P ( q N )  d%" = N !  

With suitable initial conditions, dynamical equations for the particles and the 
continuous phase, and conditions 'at infinity' for the latter, it is then possible in 
principle to uniquely calculate the evolution of the system in time. Now it can be shown 
that g satisfies (Zhang & Prosperetti 1994) 

(4) 
a 
at 
- (ng) + V (nwg) = n& 

where g is the time derivative of g following the evolution of the entire system. 
In particular, for g = 1, we find the conservation equation for the particle number 
density n: 

(5 )  
an 
-+V-(niii) = 0, 
at 

using which (4) may be rewritten as 

n (Z -+w.vg - ) = - ~ . [ n ( m - ~ g ) ] + n g .  (6) 

The equation of motion for a generic particle positioned at x" in the absence of 
viscous and gravitational forces is 

with m the mass of the particle. After expressing the continuous-phase pressure p from 
the Bernoulli integral, we have 

where p is the density of the continuous phase, & is the continuous phase flow 
potential, ri the unit outward normal on the surface of the particle, and uc = Vq5? the 
velocity of the fluid. Upon introducing the impulse I according to the usual defimtion 

and applying a standard transport theorem, we find 

dS,ri(+u,. UC - W"-U,). (10) I m?v+i" = p 
If-zf-a 

For any closed surface the integral 1 dS,(a, &) ii, is symmetric in the indices i and j so 
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that, in view of the kinematic boundary condition u,.A = wa-ii on the particle surface, 
the preceding expression may equivalently be written as 

rnl+"+i. = F", (1 1) 

where (12) 

and u: = uc.uc, with 1 the identity tensor. The left-hand side of (11) expresses the 
change of the apparent momentum p that can be attributed to the particle, 

pa = m e +  I". 

Fa = .f,-,,-. dS, A. (;u: 1 - U, u ~ ) ,  

n [E - + w - v ~ J  - 1 = - v - [ n ( ~ q ~ - w p ) ] + n F ,  (14) 

(1 3) 
Upon averaging the equation of motion (11) according to (3) and using (6) to 

express 2, we find 

where, according to (3), we have 
N 

n(x, t )  F(x, t) = - dgNP(VN, t) C FaS(x - 9). 
N! 'I a 

Equation (14), with minor modifactions accounting for the finite mass of the 
particles, is in agreement with the corresponding momentum equation derived by 
Biesheuvel & Gorissen (1990) and SD (cf. (1) with 8 = wp- W ~ J  and nF = 
- V - a ,  Q = nrp).  The latter investigators determined Q for a set of N interacting 
particles placed inside the unit cell of a periodic array to avoid the difficulty associated 
with the long-range nature of the interaction force among particles. As mentioned in the 
Introduction, this makes the resulting expression for the stress rather too specialized. 
In what follows, we shall present a simpler and more general method for arriving at the 
expression for the particle stress. In this part of the present study, we shall adopt a 
simple dipole approximation for the potential flow around N incompressible particles 
and write 

(16) 

where 0; is the induced dipole due to the presence of particle a, 3, = a/ax, is an 
abbreviated notation for partial differentiation, and is the potential due to sources 
other than the dipoles of the particles. A more complete expression for the velocity 
potential can be written by including higher-order multipoles if desired. However, as 
shown in Sangani & Didwania (1993 b), the dipole approximation is adequate in many 
potential flow applications, and furthermore the difficulties associated with the long- 
range nature of the interactions are important only for the dipole interactions. 

For the purpose of relating the induced dipoles to the velocity of the particles, we 
expand 9, near the centre of a representative particle 01 in vector harmonics: 

N 

4 c ( 4  = Am- E 0; a,lx-x"l-', 
a=l  

$, = s. [VV(x") +D"s-3] + . . . , (17) 
where s = x-x" and qY is the regular part of q5 at x", i.e. 

Application of the boundary condition R-V& = A.wa at the surface of the particle 
gives 

Da = ta3[ur(x") - w"], 
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Now the force on the particle is approximately given by (see e.g. Milne Thomson 
where a is the radius of the particle and u' = VqY. 

1968) 

A more precise expression for the force on a particle in the midst of many others may 
be obtained by including higher-order multipoles induced by the presence of the 
particle (see e.g. (78H79) in SD where C,,,, , is related to the derivatives of the regular 
part of the velocity at x). 

= 4 ~ ~ 0 ,  a, ui(x"). (20) 

Upon combining (20) with (15) we obtain 

N 
dWNP(WN, t) C S(x - x") 0; a, u;(x", t ; WN). 

N! a-1 

Substituting for u' = V@ from (18) into (21), and noting that q5, is independent of W N ,  
we find 

(22) 
where Pfl = Ix"-xflI and the partial derivatives are taken with respect to Fj. Now, 
given and the position and velocity of all the particles, the dipole moment of each 
particle is in principle determined. Therefore, specifying wa is equivalent to specifying 
D", and vice versa. Since the velocities of the particles do not explicitly appear in the 
above calculation, it is convenient to think of V N  as being equivalently specified in 
terms of x" and D". After averaging over N-2 particles, the above expression yields 

n&x) = -4np dW2P(2, t )6(x-x1)D:,02,aemn-+4npn6,a, ,~, ,  (23) 

with P(2,t) the probability of finding particles at positions x' and x2 with dipole 
strengths D' and D2. In the above equation, r = x' - x2. Since the particles 1 and 2 are 
distinct from each other, P(2; t) = 0 for Ix'--x21 < 2a. Outside this sphere of radius 2a, 
we write 

(24) 
where AP(2, t) is the difference between the conditional and unconditional probability 
density functions, 

(25) 
Upon splitting Pinto two parts according to this decomposition of the pair probability 
distribution we write 

(26) p = p m f  +pa'. 

The first term, that may be referred to as the mean-field contribution to the force, is 
given by 

1 f r 

P(2, t) = P(x', D', t )  P(x', D2, t )  + P(x', D', t) AP(2, t), 

AP(2, t) = P(x2, D2 I x', D', t) - P(x2, D2, t). 

n@f(x) = 4npnD,(x) dsr n D,(x - r) at,, - . 
r 'I 

The second term in (26) is 

1 
r 

~ Y ( X )  = - 4 % ~  dV2P(x', D', t) AP(2, t) S(X - x') 0; 0; a,,, -. (28) 
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The mean field force given by (27) depends on $m. We must now eliminate $m and 
obtain a result in terms of the averaged quantities at x. To do this we define the 
potential $ D  inside the particles to be a regular solution of Laplace's equation satisfying 

on I x - Y ( = a .  (29) 

(30) 

Thus, for example, #D inside particle a is given by (cf. (17)) 

@D(x) = s. [U'(X") + ~ " ~ - 3 1 +  . . . (s = x - 2). 
Now we define the ensemble-average potential (4) by 

= (x#C+(l-x)#D)~ (31)  

U(4 = (xV$c+(1-x)w) ,  (32) 

and the ensemble-averaged velocity of the mixture U by 

where ~ ( x )  is an indicator function for the continuous phase such that x equals unity 
when x lies in the continuous phase and zero otherwise and w is the velocity of the 
particle when x is inside a particle. It may be noted that, inside particle a, w" + V@, 
in general. Note also that the above definition of the average potential is the same as 
the macroscopic potential defined by Wallis (1991). 

By using the fact that $c = $D at the surface of the particles and the definition (19) 
of the induced dipole due to the presence of a particle in the vicinity of x, it is now easy 
to show that 

where G = V($). To obtain this result we need to evaluate the ensemble average 
((1 - ~ ) ( w - V $ ~ ) ) .  This we do by a volume integral over the test particle centred at 
x. This relation is therefore incorrect for inhomogeneous mixtures but, as explained in 
SD, it is sufficient to evaluate (33)  for homogeneous mixtures to determine the 
averaged equations correct to first order in the spatial derivatives of the fields. 

Since both the fluid and the particle phases are incompressible, U is solenoidal, and 
taking the divergence of (33) therefore yields 

U = G-47tnD, (33) 

V - G  = Vz($) = 47tV.(nD). (34) 

It may be noted that, while $c and satisfy the Laplace equation, the average 
potential ($) satisfies a Poisson equation. 

To obtain a relation between (4) and $a we now imagine the system of N particles 
to be bounded by a surface 252 and the flow to be induced by specifying the normal 
component of U = V($) -47tnd over this surface. Then, using Green's identity, we 
obtain 

r 

with the potential due to singularities at 'infinity', given by 

The second term in (35) may be referred to as the reactive potential. Note that both 
terms in the right-hand side of (35)  become large as the volume occupied by 52, or, 
equivalently, N, becomes large, while (#) remains finite. This circumstance is 
reminiscent of O'Brien's (1978) macroscopic boundary integral approach to re- 
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normalization but the present method is more general as the boundary conditions on 
(4) are unrestricted. Now from (35) the second partials of #w are expressed in terms 
of (4) as 

Since the integral here is convergent at infinity, we have removed the reference to 9. 
Substituting for 4w into (27) we have 

n p f  = 4rrpnD,[a , , (~)+~r~2ud3rnb. (x-r )C)*m,-  r ‘I . (38) 

The integral term can be evaluated, taking into account the generalized nature of the 
derivatives of l / r :  

(39) 
1 47c 
r at,, - + -T (Jim a, + a,, a, + a,,, a,) S(r) for r + 0, 

to obtain 

(4702 n e f  = 4xpnD, 8, Gt a,,,, + St, a,, +a,, a,,) C),(n2Dm Dn)* (40) 

The first term is the force on a dipole with strength D in a flow field with rate of strain 
VG and corresponds to the ponderomotive force introduced by Kelvin for the 
analogous electrostatic problem (Mazur & de Groot 1956; de Groot & Mazur 1962). 
This ‘ponderomotive’ force can be written as the divergence of a stress, equivalent to 
the macroscopic Maxwell stress 4 in electrostatics, 

4rrpnDji3,G, = -pC),(G,G,-~a~,GGkGk-4~nG,D,)  = - p i ? , e .  (41) 

Here use has been made of the relation (33) and of the facts that U is solenoidal and 
G is irrotational. 

The force due to the short-range interactions (cf. (28)) can also be written in 
divergence form using the procedure introduced by Irving & Kirkwood (1950) and also 
described in Biesheuvel & Gorissen (1990). Since the force between two particles, being 
proportional to atrnnr-l, is an odd function of r,  one can replace ~(x-x’) by 
~[S(x-x1)-8(x-x2)]. On using a Taylor series expansion of this delta function 
difference : 

6(x-x1)-6(x-x2) = -r,i3,6(x-x1)+... (I = x1-x2), (42) 

we obtain nFy = -a, <;, (43) 

(44) 
with u;; = --Zap) dV2P(x1,D1, t)AP(2, t)6(x-x1)r,a,,,,D:,D:. I 

r>2u 

As long as AP+O as Ixl -x21 + 00, the integral converges. Combining equations (26), 
(40), and (43) we obtain 

nF= 4npnD-VG-V.u*, (45) 

with (46) 

The first term in u* originates from the exclusion of an average dipole distribution 
within a sphere of radius 2a. Both u* and usr can be referred to as short-range 

u; = - (4n)2pn2~m 10 ~,<a, a,,, +a,, a,, + a,,, a,,) + 4;. 
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contributions to the stress. In the case of a uniform spatial distribution of particles, for 
which AP(2, t )  = 0 for r > 2a, the tensor due to short-range interactions o$’ is 
identically zero. In other words, the mixture acts just like a ‘dielectric’ continuum 
outside a sphere of radius 2a and producing a reactive field at its centre resulting in 

In general, however, the stress msr is non-zero, and one must use appropriate means to 
determine P(2, t )  as a part of the problem for given macroscopic flow conditions. For 
dilute suspensions one may use, for example, kinetic theory (e.g. van Wijngaarden & 
Kapteyn 1990; van Wijngaarden 1993; Kumaran & Koch 1993; Sangani et al. 1994) 
to determine these quantities but, for dense suspensions, one must typically use 
dynamic simulations. For this reason, it is of interest to determine the particle stress 
for a given configuration of N particles in a periodic box, a typical situation in 
simulations (e.g. Sangani & Didwania 1993b). It may be noted that this is an 
exceptional case where AP does not become vanishingly small at infinity, and thus the 
term ‘short range’ contribution is somewhat misleading here. In this section we will 
only treat the case N = 1 but the extension to arbitrary N is straightforward. 

Substituting in (44) the expression for AP appropriate for the present periodic spatial 
distribution we obtain 

where Y is the volume of the unit cell. Upon making use of the definition of the regular 
part of the periodic Green’s functions S ,  and S ,  (Hasimoto 1959; Sangani & Acrivos 
1983), we have 

Following a procedure similar to that described in SD, noting that the integral between 
E and 2a does not contribute, and using the identity 

we obtain 

This result will be compared in $4 with that given by SD. 

3. Derivation of the particle stress by the second method 
We now present an alternative derivation of the particle stress according to the 

method of Bulthuis in Appendix C of Zhang & Prosperetti (1994). This might be 
particularly welcomed by the readers who feel uncomfortable with the use of Taylor 
series expansion of the delta function (cf, (42)) used in the first derivation. The starting 
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point of this derivation is (14). Upon substituting for Ffrom (12), and after integration 
over the position of N- 1 particles and the velocities of N particles we obtain 

dS, A. (i~; 1 - uc U C ) ~  (2, t I X, w), (53) 

where P(x, w, t) is the reduced one-point probability density function and the bracket 
(. . (z, t I x, w) denotes the continuous-phase average conditional on the presence 
of a particle with position x and velocity w. For potential flow, V.(;uZ, 1 -uc uc) 
vanishes so that we have the identity 

I n(x, t) F(x, t) = p d3wP( x, w, t) I Ix-rl-a 

V ( x($; 1 - UC uC)) - d3w dS, P(y, W, t) A -  ($: 1 - UC U C ) ~  (x, t I y, W) = 0. I LU 
(54) 

This identity is a consequence of the fact that the gradient of the indicator function is 
a delta distribution with a pole at the surface of the particles multiplied by the unit 
outward normal vector A at the surface (see e.g. Zhang & Prosperetti 1994). Adding 
(54) to the right-hand side of (53), we find 

n F  = V.p( x(;uZ, 1 -uc uc))  

dS, A. ($: 1 - UC U C ) ~  (z,  t I X, W) 
+pP3wP(x, w, t) I Ix-A=a 

I Jx-A=u - p  d3w dS,P(Y,w,t)fi*(iU; 1- ~CUC)l(X,fIY,W). (55)  

The two integrals in this equation do not exactly cancel because, in the first one, the 
integration is carried out over the surface of a particle centred at x, while in the second 
one it is over all the particles that touch the point x. However, while the second 
integrand depends strongly on the distance from the particle centre, it depends only 
weakly on the position y of the centre itself and therefore a Taylor series expansion can 
be carried out in this variable. For brevity, denote the conditionally averaged quantity 
in the second integrand by F,(x, t I y, w) and let x = y + s. Then we have (Hinch 1977) 

P(Y, w, t> F,(y +s, t 1 y ,  w) = P(X, w, 0 F,(x + s, t I x, w> 
-s*V,[P(X, W, t) F,(x + S, t I X, w)] + . . . . (56) 

Since the integration variable z equals X+S, the first term cancels the first integral in 
(55) and the final result may be written as 

n P =  -V.o, 
with the particle stress given by 

(57) 

Q = M = +Tr [MI 1 + p  d3wP(x, w, t )  dS,sA.(ucuc-~$ 1 ) 1 ( ~ ,  t I t ,  w). (58)  I 
is the average momentum flux of the continuous phase which is seen to play an 
important role in Q. This result for the potential part of the particle stress has been 
derived with the only assumptions of the flow being incompressible and irrotational. 

According to (58) the particle stress is not necessarily symmetric. This circumstance 
should cause no concern as the usual arguments on the symmetry of the stress tensor 
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(see e.g. Batchelor 1967) are irrelevant here since I x  W +  0 in general. As a matter of 
fact, it can be shown that the antisymmetric part of the stress tensor u equals the 
antisymmetric part of nwl. Also, in the limit of zero particle density, we obtain 

(60) 

which is analogous to the electrostatic Maxwell stress (cf. (41) with u, = G and n = 0). 
The divergence of this stress is zero, indicating that the medium is force-free in the 
absence of particles. The presence of the particles modifies the (macroscopic) stress, 
depending on the microstructure, the number density, and the properties of the 
particles. 

The explicit evaluation of this general expression for the potential stress 0 requires 
the momentum flux in the continuous phase. A naive way to evaluate this correct to 
O(n) would be to write uc = G+u* outside a test particle with the disturbance velocity 
u* induced by the presence of the particle decaying as 1 /$ and then evaluate ( xu, uc) 
by carrying out the integration over the fluid space outside the test particle. This, 
however, leads to a non-absolutely convergent integral. Thus proper renormalization 
would be needed in evaluating this even to O(n). In fact, this has already been done by 
van Wijngaarden (1976) who used Batchelor's renormalization technique to obtain the 
momentum flux correct to O(n). His approach, however, cannot be easily generalized 
to higher order in the particle number density, and we will follow a different approach 
here in which the ensemble average over the continuous phase is first related to an 
average over the particle phase. 

Let u = V$ be the gradient of the microscopic potential introduced after (29). Note 
that with this definition u = VPD inside the particle a, and thus u =l w", where w" is the 
velocity of the particle. Upon setting u = G+u*, with G = V($) and ( u * )  = 0, we 
find 

(61) 
where 

c7 = p(uc uc -tu; l), 

uij = at + a;, 

dS, Sj( G, U: -k G k  2.4; - 86, G ,  U:), (Z, t 1 X, W), (62) s I I x-zl-a 

p - ' ~ ;  = ( xqj) + d3wP(x, W ;  t )  1 1 
+ d3wP(x, w ;  t) 

dSz sf( qk)l  ( z ,  1 x~ w ) ~  (63) 

K* = u:u;-~8ijuk*uk*. (64) 

Ix-4-a 
and 

with 

Now, since (xu*) = -((l-x)u*) = -((l-x)(V$D-G)), we can convert the 
average over the continuous phase in (62) to a volume integral over a test particle. 
Combining this with the last term in (62) and using (30) and (19) to evaluate the 
resulting integral we obtain 

(65) 

The divergence of the ' Maxwell stress' at, corresponds to the ' ponderomotive' force, 
as can be seen from equation (41). In dilute suspensions, where the interaction among 
particles can be neglected to leading approximation, the stress u* can be evaluated by 
directly integrating qj over the fluid volume outside the test particle as this quantity 
decays as l /P,  r being the distance from the centre of the particle. Alternatively, we 
may use the identity 

p-'c7!, = Gi Gj -$ai, Gk Gk -4rcnGi Dj = p-'af. 

Kj = & k ) - x j  ak KW (66) 
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together with a, Tk = 0 in the fluid, to convert the volume integral of Tj to an integral 
over the surface of the test particle. This integral can then be seen to cancel exactly the 
surface integral in (63), showing thereby that a* is smaller than O(n). In other words, 
to O(n), we have 

This result agrees with that derived by the first method. Now instead of proceeding 
with the O(n2) calculation for a specified spatial and velocity distribution of the 
particles as in the previous section, we shall consider the problem of determining U* for 
the case of N particles in a periodic box. In the framework of the dipole approximation 
the periodic flow disturbance induced by the particles can be written (cf. SD) 

u = uM + O(n2). (67) 

N 
u*(x) = - D". VVS,(P), 

0-1 

where P = x-x". Upon substituting (68) in the definition (63) of U* we may write 

N N  
u* = I: I: t f y ,  

a-1 y-1 

with 

Here V ,  denotes the volume occupied by the fluid, -lr the volume of the unit cell, and 

(71) 
Consider first the pair a + y .  For such a pair we first convert the integral over the 

surface of particle v to a volume integral inside the particle using the identity (66) and 
the divergence theorem. Thus we obtain 

Ty = ;prn %[agm Sl ( f )  a,, S1(ry) + ajm S1 (r") at, sl(ry) -8, akm Sl(P) a,, S1(ry)I- 

In calculating qj inside the particles, consistently with the divergence theorem, we must 
use the analytic extension of Tj evaluated from outside the particle, i.e. we must 
continue to use the expression (68) for u*. Using 

V%,(x) = 47t["lr-' -6(x)], 
it is readily seen that 

(73) 

a, TZ = - ~ X P ,  ~;[a(, s,(P) a, qr9 +a,, sl(rv) am S(P)I. 

27tP, Dip, ,  a,, S,(XY- x") + a,, a,, S,(Y - XY)]. 

(74) 

(75) 
Now, to evaluate the first term on the right-hand side of ( n ) ,  we substitute V2S2(P) for 
S,(P) in (71), where S, is a spatially periodic function satisfying V2S2 = Sl (Hasimoto 
1959). Integrating by parts four times and discarding at every step the integrals of 
periodic functions times A on the surface of the unit cell, we obtain 

Therefore, the last term in (72) is integrated readily to obtain 
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This can be further simplified by using (73) to find 
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r 

where we have made use of the fact that the volume integrals of S,  and S, or any of 
their derivatives over the unit cell vanish. 

The above calculations need some modifications for the pair a = y since the 
divergence of T g  will now involve the product of generalized functions (i.e. a delta 
function and its derivatives) with singular functions which cannot be integrated. Note 
that in this case TT N r-6 as r = I x-PI + 0. Of course, the overall result for the 
contribution from TT is finite and hence this strong singularity should not contribute 
to the final result. Indeed, it can be shown that the contribution from this pair is the 
same as for the other pairs except that S,  and S,  must now be replaced by their regular 
parts. Thus, the final result for a: is 

N N  

a; = -9 c. c. 0; Dr,[2 alJrnn S,(P - x') - (4, amfl + a,, a,, + a,, a,,> Sl(Y - XY>I, 
y u-1 y-1 

(78) 

with the convention that, for a = y, the derivatives of S,  and S, must be evaluated after 
removing the singularities l / r  and r / 2  from these functions. It is easily seen that the 
above expression reduces to the result derived in the previous section by taking N = 1. 
The above procedure can now be extended in a straightforward manner to include the 
higher-order multipoles in the many-particle interaction problem. However, since this 
was already done correctly in SD, we shall not pursue it here. 

It is interesting to note that the exact pair decomposition for the multiparticle stress 
tensor derived in SD appears in a very natural manner starting with the expression for 
at, derived here. More specifically, the pair decomposition is a simple consequence of 
the stress tensor being bilinear in u*, with u* written as a sum of disturbances induced 
by each particle in the suspension. 

4. Comparison with SD 
A comparison of the particle stress derived here with that in SD shows that that 

expression is incorrect. The ponderomotive force or, equivalently, the stress tensor o-z, 
which depends explicitly on G, is missing in that study. In addition, the short-range 
tensor a$ is also not exactly the same. In SD, this stress has an additional contribution 
which the authors referred to as 7;;". 

The source of the first error can be easily spotted by comparing the derivation 
presented in SD with the derivation presented in $2. In SD, a very specific form of 9, 
was chosen, namely 9, = G-x, with G treated as a constant. Since the second derivative 
of this 9, is identically zero, the mean-field part of the stress is missing. The authors 
realized that their calculation did not account for the force on particles in straining flow 
and added a note in proof in which they mentioned that an additional force due to 
straining motion must be added. For this they took 9, = G,x,+~,~x,x~ and by an 
incorrect volume averaging procedure equated a,& to the mean strain 
E = #Ik U,+ajUk) instead of a,G, as found here. Thus the term 
&a3p(l ++C,) E6, 5, with V = W- V, that they suggested should be added to the 
disperse-phase momentum equation, should have "G, instead of E6,. Based on the 
equality of the coefficient C, for the straining motion force and the added mass 
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coefficient C, in the case of periodic arrays, those authors further conjectured that 
C, = C, for random arrays as well. We see that this conjecture was correct; in fact, 
from (45) and (82) below, it appears rather naturally from the derivations presented 
here. 

The second error arose in equating q5m to ( 4 ) .  As we have seen here the difference 
between these two quantities corresponds to the reactive potential. It can be shown that 
the additional contribution from this neglected potential for cubic unit cells exactly 
cancels 7;fn. 

Thus, in summary, had SD chosen #,(x) instead of G - x  in their (47) and related the 
contribution from to (q5) and the reactive potential as is done here, they would 
have obtained the correct expression for the particle stress. 

5. Conclusions and summary of average equations 
We have obtained the potential contribution to the so-called particle, or disperse- 

phase, stress tensor u in two ways. In the approach of $2, the interaction force between 
particles was decomposed into the sum of pairwise interactions. By approximately 
representing each particle with a dipole, we were able to write the particle stress in 
terms of the pair-probability function for the particle positions and dipole moments. 
In the approach of $3, the continuous phase was viewed as the carrier of a stress 
p(uc uc -$: 1). By a direct averaging of this quantity the explicit relation (58) between 
the particle stress and the momentum flux M was established. These results correct the 
expression for a given in SD by adding a contribution of first order in the particle 
number density that was missed in that study. 

Within the dipole approximation both of our approaches have been shown to give 
identical results. Beyond the dipole approximation, the expressions become very 
complicated and we refer the reader to SD which correctly includes these higher-order 
contributions. 

With our expression for u = d + u *  we may write the disperse-phase average 
momentum equation as 

n -+iy-Vp = 4npnD-VG-V-[n~~+u*] ,  (E ) (79) 

where T~ = wp - wp and p is the apparent momentum of a particle which, in the case 
of a massless bubble, reduces to its impulse. In order to illustrate the dependence of u* 
upon the particle probability distribution function and to verify that it indeed gives an 
O(n2) contribution, we have carried out approximate calculations for periodic and 
random arrays. We did not consider the separate probiem of determining the kinetic 
part n# of the stress, and we omitted forces due to viscosity, gravitation, and collisions. 
Given suitable models for these effects (see Sangani & Didwania 19933; Sangani, 
Zhang & Prosperetti 1994) one would be able to calculate the evolution of the system. 

The present results have been derived in terms of auxiliary variables such asp, I, D, 
G, etc. For applications, these auxiliary quantities must be related to measurable fields 
such as the average particle velocity w and the mean flow rate U. For example, the 
average impulse can be related to U and w by introducing the added mass coefficient 
C, according to the definition of SD, namely 

4na3 I =  pT[;c,(iy- U ) -  
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The average dipole moment can be expressed in terms of the average impulse by writing 
& instead of q5c in the integral (9), applying the divergence theorem, and averaging, 
to find 

I= - - p - ( D + 2 D ) ,  4na2 3 -  
3 

or, combining the two foregoing relations, 

D = $3(1 +;c,)(u-w). 
Furthermore, from (33), 

47ta3n 
3 G = U + -  (1 +fC,)(U-w).  

It is perhaps unnecessary to point out that C,, like a*, depends on a particle probability 
distribution function that must be determined independently from dynamical 
simulations or kinetic theory arguments. 

A number of analytical results are available for the added mass coefficient in dilute 
as well as dense suspensions with specified spatial and velocity distribution of particles 
(e.g. van Wijngaarden 1976; Biesheuvel & Spoelstra 1989; Sangani et al. 1991; Zhang 
& Prosperetti 1994). Also, the added mass coefficient is directly related to the 
polarizability, ‘inverse porosity’ and exertia as defined by Wallis (1991). For example, 
Wallis’s coefficient S for the dipole density is defined by 

4xnb = S( U -  W) (84) 

(the extra factor -41t with respect to Wallis’s definition arises due to a difference in the 
definition of the dipole strength). Comparison with (82) shows that S is related to the 
added mass coefficient C, according to 6 = 3ra3n( 1 + fC,). The above expressions 
should, of course, be modified when the suspension microstructure is anisotropic 
because, in that case, the added mass coefficient and consequently all the related 
coefficients are tensors of rank two. 

In addition to the above equations for the particle phase, we need an additional set 
of equations for U, the ensemble-averaged mixture velocity. SD and other previous 
investigators (e.g. Biesheuvel8c van Wijngaarden 1984) propose the following mixture 
equations for the suspension of massless particles : 

v. u= 0, (85) 

where /Y is the volume fraction of particles, (1 -/I) Uf = U, - /Yw‘, and Cij is the stress 
tensor for the mixture. Here P is the mixture pressure which must be treated as an 
additional unknown, unlike u and C which through suitable constitutive relations are 
to be taken as functions of U, w - U, and their spatial derivatives. When the boundary 
conditions for the macroscopic flow are specified in terms of U, potential flow effects 
are of primary importance, and the determination of P is unimportant, one may use 
an alternative, simpler, kinematic description of the mixture : 

(87) V. U = 0, v x [ U+4nnD] = 0 

obtained by taking a curl of (33). In this case the complete set of equations describing 
the two-phase flow consists of equations (3, (13), (79), (80), (82), (83) and (87). 
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It is useful to write (79) in terms of the volumetric flow rate U instead of G as 
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where n7; = cr$ - 8 ~ ~ p ( n D ) ~ 4 , .  (89) 

For one-dimensional flow U is independent of x and the first two terms in the right- 
hand side of (88) vanish. In this case the particle momentum is therefore only 
dependent on T~ and T*. For random arrays our calculations with the point-dipole 
approximation give 

(90) 

Note that, for dipole moments aligned in the x-direction so that DI = &Jt1, this yields 

(91) 

"76 = (47~n)~p[ -;D2cYs, + ;Dt D,]. 

n 7 P  11 - - -1 ,p(4xcnD)', nTr(Tp)  = - ~ ( 4 x n D ) ~ .  

In the case of a simple cubic array of particles, our equations (52) and (89) together 
with the fact that a,S:(O) = (4/3V)xS,,, yield instead 

n7& = Ap(4~nD)~, n Tr (T") = - ~ ( 4 x n D ) ~ ,  (92) 

with h = -(Y/4x)alll1 Si(0) z 0.1716. This result for is interestingly in agreement 
with that given in SD because the two errors mentioned in 54 exactly cancel each other. 
On the other hand, the trace of T~ as given in SD is in error. 

It may be noted that while we have discussed specific results for the two very special 
cases of periodic suspension and random suspension with uniform dipole distribution, 
the general expressions derived here have wider applicability and can be used to 
determine stress in a more general flow by combining it with either a suitable kinetic 
theory or numerical simulations. 
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